Informal Argonne Seminar Series, 2004

The Revival of Active Set Methods

Sven Leyffer, leyffer@mcs.anl.gov

Mathematics & Computer Science Division, Argonne National Laboratory

- 1. Why Do We Need Active Set Methods?
- 2. Active Set Methods for Quadratic Programs
- 3. Active Set Methods for Nonlinear Programs

Philosophy Lesson

$$\underset{x}{\text{minimize }} f(x) \qquad \text{subject to } c(x) \ge 0$$

1. Global Convergence

2. Active Set Identification

3. Fast Local Convergence

minimize
$$f(x)$$
 subject to $c(x) \ge 0$

- 1. Global Convergence
 - merit function, e.g. $f(x) + \pi ||c(x)^-||$ for $\pi > ||y^*||_D$
 - filter ... more later
- 2. Active Set Identification

3. Fast Local Convergence

minimize
$$f(x)$$
 subject to $c(x) \ge 0$

1. Global Convergence

- merit function, e.g. $f(x) + \pi ||c(x)^-||$ for $\pi > ||y^*||_D$
- filter ... more later

2. Active Set Identification

- given active set, simply use Newton's method
- step computation: update estimate of active set
- alternative: interior point methods $Yc(x) = \mu e \& \mu \searrow 0$

3. Fast Local Convergence

∢ 🗇 ▶

Sven Levffer

minimize
$$f(x)$$
 subject to $c(x) \ge 0$

1. Global Convergence

- merit function, e.g. $f(x) + \pi \|c(x)^-\|$ for $\pi > \|y^*\|_D$
- filter ... more later

2. Active Set Identification

- given active set, simply use Newton's method
- step computation: update estimate of active set
- alternative: interior point methods $Yc(x) = \mu e \& \mu \searrow 0$

3. Fast Local Convergence

- conjugate gradients et al.
- (constrained) preconditioners

< ₱ →

Sven Levffer

Interior point methods (IPMs) usually faster than ASMs:

- 1. Pivoting inefficient for huge problems
- 2. Single QP solve \simeq several Newton steps of IPM
- 3. Null-space projected Hessian factors are **DENSE**

Interior point methods (IPMs) usually faster than ASMs:

- 1. Pivoting inefficient for huge problems
- 2. Single QP solve \simeq several Newton steps of IPM
- 3. Null-space projected Hessian factors are **DENSE**

Why should we be interested in ASMs?

- ASMs often more robust than interior point methods
- ASMs better for warm-starts (repeated solves)
- Easier to precondition ... iterative solves

Challenge: overcome 1. & 2. from above

Interior point methods (IPMs) usually faster than ASMs:

- 1. Pivoting inefficient for huge problems
- 2. Single QP solve \simeq several Newton steps of IPM
- 3. Null-space projected Hessian factors are **DENSE**

Why should we be interested in ASMs?

- ASMs often more robust than interior point methods
- ASMs better for warm-starts (repeated solves)
- Easier to precondition ... iterative solves

Challenge: overcome 1. & 2. from above

Two ways to make large changes to active set

- 1. Projected gradient approach
- 2. Sequential linear programming approach

ACTIVE SET METHODS FOR QPs

Active Sets for Quadratic Programs (QPs)

minimize
$$\frac{1}{2}x^T H x + g^T x$$

subject to $A^T x = b$
 $I \le x \le u$

- H is symmetric (indefinite?)
- A^T is $m \times n$, m < n, full rank
- General: $\bar{l} \leq \begin{pmatrix} x \\ A^T x \end{pmatrix} \leq \bar{u}$

Active set
$$A(x) = \{i \mid x_i = l_i \text{ or } x_i = u_i\}$$

Inactive set $I(x) = \{1, \dots, n\} - A(x)$

Sven Leyffer

Active Sets for Quadratic Programs (QPs)

Active set
$$\mathcal{A}(x) = \{i \mid x_i = l_i \text{ or } x_i = u_i\}$$

Inactive set $\mathcal{I}(x) = \{1, \dots, n\} - \mathcal{A}(x)$

Given A, QP solution $(x_{\mathcal{I}}^*, y^*)$ solves

$$\begin{bmatrix} H_{\mathcal{I},\mathcal{I}} & -A_{:,\mathcal{I}} \\ A_{:,\mathcal{I}}^T \end{bmatrix} \begin{pmatrix} x_{\mathcal{I}} \\ y \end{pmatrix} = \begin{pmatrix} -g_{\mathcal{I}} - H_{\mathcal{I},\mathcal{A}} x_{\mathcal{A}} \\ b - A_{:,\mathcal{A}}^T x_{\mathcal{A}} \end{pmatrix}$$

Active-set methods search for A^* :

- Delete entries from A^k ; update a factorization; compute step
- Possibly add entries to \mathcal{A}^k
- \exists robust solvers; good for warm starts ... *n* large ???

√ 🗇 →

Sven Levffer

Active Set Methods

PROJECTED GRADIENT

Projected Gradient for Box Constrained QPs

Simpler box constrained QP ...

$$\begin{cases} \underset{x}{\text{minimize}} & \frac{1}{2}x^T H x + g^T x =: q(x) \\ \text{subject to} & l \le x \le u \end{cases}$$

Projected steepest descent $P[x - \alpha \nabla q(x)]$

Theorem: Cauchy points converge to stationary point.

< A →

Projected Gradient & CG for Box Constrained QPs

 x^0 given such that $l \le x^0 \le u$; set k = 0

WHILE (not optimal) BEGIN

- 1. find Cauchy point x_k^c & active set $\mathcal{A}(x_k^c)$
- 2. (approx.) solve box QP in subspace $\mathcal{I} := \{1, \dots, n\} \mathcal{A}(x_k^c)$ $\begin{array}{ccc}
 \text{minimize} & \frac{1}{2}x^T H x + g^T x \\
 \text{subject to} & I \leq x \leq u \\
 & x_i = [x_k^c]_i, \forall i \in \mathcal{A}(x_k^c)
 \end{array}$ \Leftrightarrow $\begin{array}{c}
 \text{apply CG to } \dots \\
 H_{\mathcal{I},\mathcal{I}} x_{\mathcal{I}} = \dots
 \end{array}$

for x^{k+1} ; set k = k+1

END

Cauchy point \Rightarrow global convergence ... but faster due to CG

4 🗇 ▶

Sven Levffer

Active Set Methods

How to Include $A^Tx = b$?

Projection onto box is easy, but tough for general QP

$$P_{QP}[z] = \begin{cases} \underset{x}{\text{minimize}} & (x - z)^T (x - z) \\ \text{subject to} & A^T x = b \\ & I \le x \le u \end{cases}$$

... as hard as original QP! ... Idea: project onto box only

 \Rightarrow subspace solve $H_{\mathcal{I},\mathcal{I}}x_{\mathcal{I}}=...$ becomes solve with KKT system

$$\begin{bmatrix} H_{\mathcal{I},\mathcal{I}} & -A_{:,\mathcal{I}} \\ A_{:,\mathcal{I}}^T \end{bmatrix} \begin{pmatrix} x_{\mathcal{I}} \\ y \end{pmatrix} = \dots$$

Which gradient / merit function in Cauchy step?

4 🗇 →

AUGMENTED LAGRANGIAN

The Augmented Lagrangian

Arrow & Solow ('58), **Hestenes** ('69), **Powell** ('69)

minimize
$$L(x, y_k, \rho_k) = f(x) - y_k^T c(x) + \frac{1}{2} \rho_k ||c(x)||^2$$

- As $y_k \to y_*$: $x_k \to x_*$ for $\rho_k > \bar{\rho}$
 - No ill-conditioning, improves convergence rate
- An old idea for nonlinear constraints ... smooth merit function
- Poor experience with LPs (e.g., MINOS vs. LANCELOT)
- But special structure of LPs (and QPs) not fully exploited

$$f(x) = \frac{1}{2}x^{T}Hx + g^{T}x$$
 & $c(x) = A^{T}x - b$

√ 🗇 →

Sven Leyffer

Active Set Methods

Bound Constrained Lagrangian (BCL)

Minimizing the augmented Lagrangian subject to bounds:

WHILE (not optimal) BEGIN

1. Find $\omega_k \setminus 0$ optimal x_k of

minimize
$$f(x) - y_k^T c(x) + \frac{1}{2} \rho_k ||c(x)||^2$$

Bound Constrained Lagrangian (BCL)

Minimizing the augmented Lagrangian subject to bounds:

WHILE (not optimal) BEGIN

1. Find $\omega_k \searrow 0$ optimal x_k of

$$\underset{l \le x \le u}{\text{minimize}} \quad f(x) - y_k^T c(x) + \frac{1}{2} \rho_k ||c(x)||^2$$

2. IF $||c(x_k)|| \le \eta_k \setminus 0$ THEN Update y_k (typically $y_{k+1} = y_k - \rho_k c(x_k)$) ELSE increase ρ_k

END

Bound Constrained Lagrangian (BCL)

Minimizing the augmented Lagrangian subject to bounds:

WHILE (not optimal) BEGIN

1. Find $\omega_k \setminus 0$ optimal x_k of

minimize $f(x) - y_k^T c(x) + \frac{1}{2} \rho_k ||c(x)||^2$

$$2. \text{ IF } ||c(x_k)|| \leq \eta_k \searrow 0 \text{ THEN}$$

2. IF $||c(x_k)|| \le \eta_k \setminus 0$ THEN

Update y_k (typically $y_{k+1} = y_k - \rho_k c(x_k)$)

ELSE increase ρ_k

END

Arbitrary sequences: $\eta_k \& \omega_k$ control feasibility & optimality

Augmented Lagrangian for Linear Constraints

 $\forall (\rho, y) \in \mathcal{D}$, minimize $L(x, y, \rho)$ has unique solution $x(y, \rho)$:

- bound constrained augmented Lagrangian converges
- Hessian $\nabla^2_{xx} L(x, y, \rho)$ is positive definite on optimal face

Augmented Lagrangian for Linear Constraints

 $\forall (\rho, y) \in \mathcal{D}$, minimize $L(x, y, \rho)$ has unique solution $x(y, \rho)$:

- bound constrained augmented Lagrangian converges
- Hessian $\nabla^2_{xx} L(x, y, \rho)$ is positive definite on optimal face

$$\bar{\rho} \approx 2 \frac{\|H_*\|}{\|A_* A^T_*\|}$$

 $\bar{\rho} \approx 2 \frac{\|H_*\|}{\|A_*A_*^T\|}$... depends on active set ... from dual Hessian

WHILE (not optimal) BEGIN

1. Find $\omega_k \searrow 0$ optimal solution x_k^c of

$$\underset{l \le x \le u}{\text{minimize}} \ \frac{1}{2} x^T H x + g^T x - y^T (A^T x - b) + \frac{1}{2} \rho_k ||A^T x - b||^2$$

- 2. Find $\mathcal{A}(x_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\| / \|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- 3. IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$

WHILE (not optimal) BEGIN

1. Find $\omega_k \searrow 0$ optimal solution x_k^c of

$$\underset{l \le x \le u}{\text{minimize}} \frac{1}{2} x^T H x + g^T x - y^T (A^T x - b) + \frac{1}{2} \rho_k ||A^T x - b||^2$$

- 2. Find $\mathcal{A}(x_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\| / \|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- 3. IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$
- 4. Solve equality QP in subspace $\rightarrow (\Delta_{x_{\mathcal{I}}}, \Delta y)$ $\begin{bmatrix} H_{\mathcal{I},\mathcal{I}} & -A_{:,\mathcal{I}} \\ A_{:,\mathcal{I}}^{\mathsf{T}} & \end{bmatrix} \begin{pmatrix} \Delta x_{\mathcal{I}} \\ \Delta y \end{pmatrix} = -\begin{pmatrix} [\nabla x L(x_{k}^{c}, y_{k}^{c}, 0)]_{\mathcal{I}} \\ A^{\mathsf{T}} x_{k}^{c} b \end{pmatrix}$

< ₱ →

Sven Leyffer

WHILE (not optimal) BEGIN

1. Find $\omega_k \searrow 0$ optimal solution x_k^c of

$$\underset{1 \le x \le u}{\text{minimize}} \frac{1}{2} x^T H x + g^T x - y^T (A^T x - b) + \frac{1}{2} \rho_k ||A^T x - b||^2$$

- 2. Find $\mathcal{A}(\mathbf{x}_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\| / \|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- 3. IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$
- 4. Solve equality QP in subspace $\rightarrow (\Delta_{x_{\mathcal{I}}}, \Delta y)$ $\begin{bmatrix} H_{\mathcal{I},\mathcal{I}} & -A_{:,\mathcal{I}} \\ A_{:,\mathcal{I}}^{\mathsf{T}} & \end{bmatrix} \begin{pmatrix} \Delta x_{\mathcal{I}} \\ \Delta y \end{pmatrix} = -\begin{pmatrix} [\nabla x L(x_{k}^{c}, y_{k}^{c}, 0)]_{\mathcal{I}} \\ A^{\mathsf{T}} x_{k}^{c} b \end{pmatrix}$
- 5. Line-search on $L(x_k^c + \alpha \Delta x, y_k^c + \alpha \Delta y, \rho)$; **update** x, y, k, ρ

END

WHILE (not optimal) BEGIN

1. Find $\omega_k \searrow 0$ optimal solution x_k^c of

$$\frac{\sum_{1 \le x \le u}^{K} \frac{1}{2} x^{T} H x + g^{T} x - y^{T} (A^{T} x - b) + \frac{1}{2} \rho_{k} ||A^{T} x - b||^{2}}{\|A^{T} x - b\|^{2}}$$

- 2. Find $\mathcal{A}(x_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\| / \|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- 3. IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$
- 4. Solve equality QP in subspace $\rightarrow (\Delta_{x_{\mathcal{I}}}, \Delta y)$ $\begin{bmatrix} H_{\mathcal{I},\mathcal{I}} & -A_{:,\mathcal{I}} \\ A_{:,\mathcal{I}}^{\mathsf{T}} & \end{bmatrix} \begin{pmatrix} \Delta x_{\mathcal{I}} \\ \Delta y \end{pmatrix} = \begin{pmatrix} [\nabla x L(x_{k}^{c}, y_{k}^{c}, 0)]_{\mathcal{I}} \\ A^{\mathsf{T}} x_{k}^{c} b \end{pmatrix}$
- 5. Line-search on $L(x_k^c + \alpha \Delta x, y_k^c + \alpha \Delta y, \rho)$; **update** x, y, k, ρ

END

1.-3. identify active set

WHILE (not optimal) BEGIN

1. Find $\omega_k \searrow 0$ optimal solution x_k^c of

$$\underset{l \le x \le u}{\text{minimize}} \ \frac{1}{2} x^T H x + g^T x - y^T (A^T x - b) + \frac{1}{2} \rho_k ||A^T x - b||^2$$

- 2. Find $\mathcal{A}(x_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\| / \|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- 3. IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$
- 4. Solve equality QP in subspace $\rightarrow (\Delta_{x_{\mathcal{I}}}, \Delta y)$ $\begin{bmatrix} H_{\mathcal{I},\mathcal{I}} & -A_{:,\mathcal{I}} \\ A_{:,\mathcal{I}}^{\mathsf{T}} & \end{bmatrix} \begin{pmatrix} \Delta x_{\mathcal{I}} \\ \Delta y \end{pmatrix} = \begin{pmatrix} [\nabla x L(x_{k}^{c}, y_{k}^{c}, 0)]_{\mathcal{I}} \\ A^{\mathsf{T}} x_{k}^{c} b \end{pmatrix}$
- 5. Line-search on $L(x_k^c + \alpha \Delta x, y_k^c + \alpha \Delta y, \rho)$; **update** x, y, k, ρ

END

1.-3. identify active set ... 4. gives fast convergence

√ 🗗 ▶

Sven Levffer

Active Set Methods

Filter Methods

Two competing aims in augmented Lagrangian:

- 1. reduce $h_k := ||A^T x_k b|| \le \eta_k \setminus 0$
- 2. reduce $\theta_k := \|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k \setminus 0$

Two competing aims in augmented Lagrangian:

- 1. reduce $h_k := ||A^T x_k b|| \le \eta_k \setminus 0$
- 2. reduce $\theta_k := \|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k \setminus 0$

... why should one sequence $\{\omega_k\}$, $\{\eta_k\}$ fit all problems ???

Introduce a filter \mathcal{F} to promote convergence

- list of pairs $(\|A^Tx_I b\|, \|\nabla L_I z_I\|)$
- no pair dominates any other pair
- new x_k acceptable to filter \mathcal{F} , iff
 - 1. $h_k \leq 0.99 \cdot h_l \ \forall l \in \mathcal{F}$
 - 2. $\theta_k \leq 0.99 \cdot \theta_l \ \forall l \in \mathcal{F}$

Introduce a filter \mathcal{F} to promote convergence

- list of pairs $(\|A^Tx_l b\|, \|\nabla L_l z_l\|)$
- no pair dominates any other pair
- new x_k acceptable to filter \mathcal{F} , iff
 - 1. $h_k < 0.99 \cdot h_l \ \forall l \in \mathcal{F}$
 - 2. $\theta_k \leq 0.99 \cdot \theta_I \ \forall I \in \mathcal{F}$
- remove redundant entries

Introduce a filter \mathcal{F} to promote convergence

- list of pairs $(\|A^Tx_I b\|, \|\nabla L_I z_I\|)$
- no pair dominates any other pair
- new x_k acceptable to filter \mathcal{F} , iff
 - 1. $h_k < 0.99 \cdot h_l \ \forall l \in \mathcal{F}$
 - 2. $\theta_k < 0.99 \cdot \theta_l \ \forall l \in \mathcal{F}$
- remove redundant entries
- reject new x_k , if $h_k > h_l \& \theta_k > \theta_l$

Introduce a filter \mathcal{F} to promote convergence

- list of pairs $(\|A^Tx_I b\|, \|\nabla L_I z_I\|)$
- no pair dominates any other pair
- new x_k acceptable to filter \mathcal{F} , iff
 - 1. $h_k < 0.99 \cdot h_l \ \forall l \in \mathcal{F}$
 - 2. $\theta_k \leq 0.99 \cdot \theta_l \ \forall l \in \mathcal{F}$
- remove redundant entries
- reject new x_k , if $h_k > h_l \& \theta_k > \theta_l$

... and old friend from Chicago ...

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point x_k^c for filter:

1. x_k^c, y_k^c acceptable to filter

Requirement on Cauchy Point x_k^c for filter:

- 1. x_k^c, y_k^c acceptable to filter
- 2. $\|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k$... optimality of Lagrangian

Requirement on Cauchy Point x_k^c for filter:

- 1. x_k^c, y_k^c acceptable to filter
- 2. $\|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k$... optimality of Lagrangian

New:
$$\omega_k := 0.1 \max \{ \|\nabla L_l - z_l \| \}$$
 ... depends on filter

Requirement on Cauchy Point x_k^c for filter:

- 1. x_k^c, y_k^c acceptable to filter
- 2. $\|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k$... optimality of Lagrangian

New:
$$\omega_k := 0.1 \max \{ \|\nabla L_l - z_l \| \}$$
 ... depends on filter

1. ensures that back-tracking line-search will succeed ... if not acceptable then reduce $\omega_{k+1} = \omega_k/2$

Requirement on Cauchy Point x_k^c for filter:

- 1. x_k^c, y_k^c acceptable to filter
- 2. $\|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k$... optimality of Lagrangian

New:
$$\omega_k := 0.1 \max \{ \|\nabla L_l - z_l \| \}$$
 ... depends on filter

- 1. ensures that back-tracking line-search will succeed ... if not acceptable then reduce $\omega_{k+1} = \omega_k/2$
- 2. & $\omega_{k+1} = \omega_k/2$ ensure new entry can be added to filter

< ₱ →

Requirement on Cauchy Point x_k^c for filter:

- 1. x_k^c, y_k^c acceptable to filter
- 2. $\|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k$... optimality of Lagrangian

New:
$$\omega_k := 0.1 \max \{ \|\nabla L_l - z_l \| \}$$
 ... depends on filter

- 1. ensures that back-tracking line-search will succeed ... if not acceptable then reduce $\omega_{k+1} = \omega_k/2$
- 2. & $\omega_{k+1} = \omega_k/2$ ensure new entry can be added to filter

Why do you keep the penalty parameter?

... combines search directions for
$$||A^Tx - b||$$
, and $||\nabla L(x_l, y_l, \rho_l) - z_l||$ \Rightarrow gradient projection possible

Active Set Evolution: blockqp4_100

AUGLAG

red = lower bound active
green = upper bound active

Active Set Evolution: blockqp4_100

red = lower bound active
green = upper bound active

1. Global Convergence

2. Active Set Identification

3. Fast Local Convergence

- 1. Global Convergence
 - augmented Lagrangian & filter
 ⇒ no arbitrary parameters
- 2. Active Set Identification

3. Fast Local Convergence

1. Global Convergence

- augmented Lagrangian & filter
 ⇒ no arbitrary parameters
- 2. Active Set Identification
 - projected gradient on augmented Lagrangian
 - easy penalty parameter estimate
- 3. Fast Local Convergence

1. Global Convergence

- augmented Lagrangian & filter
 ⇒ no arbitrary parameters
- 2. Active Set Identification
 - projected gradient on augmented Lagrangian
 - easy penalty parameter estimate
- 3. Fast Local Convergence
 - conjugate gradients on equality QP
 - (constrained) preconditioners ???
 - Benzi-Golub ... ties in with augmented Lagrangian

△ Sven Leyffer Active Set Methods 22 of 31

ACTIVE SET METHODS FOR NLPs

Sequential Quadratic Programming (SQP)

NLP: minimize
$$f(x)$$
 subject to $c(x) \ge 0$

SQP method of choice for NLP

Compute displacement/step d by solving QP subproblem

minimize
$$g^Td + \frac{1}{2}d^TWd$$

subject to $c + A^Td \ge 0$
 $\|d\|_{\infty} \le \Delta$ Trust-Region

where
$$g = \nabla f(x)$$
, $A = \nabla c(x)^T$, $W = \nabla^2 \mathcal{L}(x, y)$

4 🗗 ▶

Sven Levffer

Sequential Quadratic Programming (SQP)

WHILE (not optimal) BEGIN

- 1. Compute displacement/step d by solving QP subproblem
- 2. **IF** step d acceptable **THEN** x = x + d & increase trust-region radius $\Delta = 2 * \Delta$ **ELSE**

x = x & decrease trust-region radius $\Delta = \Delta/2$

END

- How to make it work for n large ???
 QP solve is bottleneck ... could use new QPFIL
- ∃ excellent LP solvers ... but QP harder

Sequential Linear Programming

Throw away quadratic term \Rightarrow linear program

Compute displacement/step d_{LP} by solving LP subproblem

$$\begin{array}{ll} \underset{d}{\text{minimize}} & g^T d + \frac{1}{2} d^T W d \\ \text{subject to} & c + A^T d \geq 0 \\ & \|d\|_{\infty} \leq \Delta & \text{Trust-Region} \end{array}$$

where
$$g = \nabla f(x)$$
, $A = \nabla c(x)^T$, $W = \nabla^2 \mathcal{L}(x, y)$

4 🗇 ▶

Sven Levffer

Active Set Methods

Sequential Linear Programming

WHILE (not optimal) BEGIN

1. Compute displacement/step d_{LP} by solving LP subproblem

3. **IF** step *d* acceptable **THEN**

$$x = x + d$$
 & increase trust-region radius $\Delta = 2 * \Delta$

ELSE

$$x = x$$
 & decrease trust-region radius $\Delta = \Delta/2$

END

⇒ slow local convergence ... steepest descent

Sequential Linear Programming

WHILE (not optimal) BEGIN

- 1. Compute displacement/step d_{LP} by solving LP subproblem
- 2. Identify active constraints: $A = \{i : c_i + a_i^T d_{LP} = 0\}$ & solve

minimize
$$g^T d + \frac{1}{2} d^T W d$$

subject to $c_i + a_i^T d = 0$ $i \in \mathcal{A}$ $\Leftrightarrow \begin{bmatrix} H_{\mathcal{I},\mathcal{I}} & -A_{:,\mathcal{I}}^T \\ A_{:,\mathcal{I}} \end{bmatrix} \begin{pmatrix} d_{\mathcal{I}} \\ y \end{pmatrix}$

equality QP for step d

3. **IF** step *d* acceptable **THEN**

$$x = x + d$$
 & increase trust-region radius $\Delta = 2 * \Delta$

ELSE

$$x = x$$
 & decrease trust-region radius $\Delta = \Delta/2$

END

How expensive are LPs??

Active Set Identification by SLP

Polyhedral trust-region makes LP solves inefficient

$$\begin{array}{ll} \text{minimize} & g^T d \\ \text{subject to} & c + A^T d \geq 0 \\ & \|d\|_{\infty} \leq \Delta & \text{Trust-Region} \end{array}$$

- many changes to active trust-region bounds
- LP solvers too slow near solution

Active Set Identification by SLP

Ellipsoidal trust-region makes LPs into NLPs

minimize
$$g^T d$$

subject to $c + A^T d \ge 0$
 $\|d\|_2 \le \Delta$ Trust-Region

- trust-region (always) active ⇒ no changes
- subproblem is now NLP ... as hard as original problem ???

√ 🗗 🕨

Sven Leyffer

Active Set Identification by SLP

Ellipsoidal trust-region makes LPs into NLPs

- trust-region (always) active ⇒ no changes
- subproblem is now NLP ... as hard as original problem ???

4 🗇 →

Sven Leyffer

1. Global Convergence

- 2. Active Set Identification
- 3. Fast Local Convergence

- 1. Global Convergence
 - Sequential bound constraint
 - Trust-region & Filter
- 2. Active Set Identification
- 3. Fast Local Convergence

- 1. Global Convergence
 - Sequential bound constraint
 - Trust-region & Filter
- 2. Active Set Identification
 - d_{IP} LP steps from subproblem
- 3. Fast Local Convergence

1. Global Convergence

- Sequential bound constraint
- Trust-region & Filter
- 2. Active Set Identification
 - d_{IP} LP steps from subproblem
- 3. Fast Local Convergence
 - conjugate gradients on equality QP
 - (constrained) preconditioners ???